Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2743022.v1

ABSTRACT

It is of interest to pinpoint SARS-CoV-2 sequence features defining vaccine resistance. In the ENSEMBLE randomized, placebo-controlled phase 3 trial, estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe–critical COVID-19. SARS-CoV-2 Spike sequences were measured from 484 vaccine and 1,067 placebo recipients who acquired COVID-19 during the trial. In Latin America, where Spike diversity was greatest, VE was significantly lower against Lambda than against Reference and against all non-Lambda variants [family-wise error rate (FWER) p < 0.05]. VE also differed by residue match vs. mismatch to the vaccine-strain residue at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20). VE significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 different antibody-epitope escape scores and by 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccine recipient sera. VE against severe–critical COVID-19 was stable across most sequence features but lower against viruses with greatest distances. These results help map antigenic specificity of in vivo vaccine protection.


Subject(s)
COVID-19 , Encephalomyelitis, Acute Disseminated
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.27.064774

ABSTRACT

The magnitude of the COVID-19 pandemic underscores the urgency for a safe and effective vaccine. Here we analyzed SARS-CoV-2 sequence diversity across 5,700 sequences sampled since December 2019. The Spike protein, which is the target immunogen of most vaccine candidates, showed 93 sites with shared polymorphisms; only one of these mutations was found in more than 1% of currently circulating sequences. The minimal diversity found among SARS-CoV-2 sequences can be explained by drift and bottleneck events as the virus spread away from its original epicenter in Wuhan, China. Importantly, there is little evidence that the virus has adapted to its human host since December 2019. Our findings suggest that a single vaccine should be efficacious against current global strains. One Sentence SummaryThe limited diversification of SARS-CoV-2 reflects drift and bottleneck events rather than adaptation to humans as the virus spread.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.15.992883

ABSTRACT

SARS-CoV-2 is a zoonotic virus that has caused a pandemic of severe respiratory disease--COVID-19-- within several months of its initial identification. Comparable to the first SARS-CoV, this novel coronaviruss surface Spike (S) glycoprotein mediates cell entry via the human ACE-2 receptor, and, thus, is the principal target for the development of vaccines and immunotherapeutics. Molecular information on the SARS-CoV-2 S glycoprotein remains limited. Here we report the crystal structure of the SARS-CoV-2 S receptor-binding-domain (RBD) at a the highest resolution to date, of 1.95 [A]. We identified a set of SARS-reactive monoclonal antibodies with cross-reactivity to SARS-CoV-2 RBD and other betacoronavirus S glycoproteins. One of these antibodies, CR3022, was previously shown to synergize with antibodies that target the ACE-2 binding site on the SARS-CoV RBD and reduce viral escape capacity. We determined the structure of CR3022, in complex with the SARS-CoV-2 RBD, and defined a broadly reactive epitope that is highly conserved across betacoronaviruses. This epitope is inaccessible in the "closed" prefusion S structure, but is accessible in "open" conformations. This first-ever resolution of a human antibody in complex with SARS-CoV-2 and the broad reactivity of this set of antibodies to a conserved betacoronavirus epitope will allow antigenic assessment of vaccine candidates, and provide a framework for accelerated vaccine, immunotherapeutic and diagnostic strategies against SARS-CoV-2 and related betacoronaviruses. HIGHLIGHTSHigh resolution structure of the SARS-CoV-2 Receptor-Binding-Domain (RBD). Recognition of the SARS-CoV-2 RBD by SARS-CoV antibodies. Structure of the SARS-COV-2 RBD in complex with antibody CR3022. Identification of a cryptic site of vulnerability on the SARS-CoV-2 Spike.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL